Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Iron-sulfur cluster biogenesis and trafficking in mitochondria.

Identifieur interne : 000350 ( Main/Exploration ); précédent : 000349; suivant : 000351

Iron-sulfur cluster biogenesis and trafficking in mitochondria.

Auteurs : Joseph J. Braymer ; Roland Lill [Allemagne]

Source :

RBID : pubmed:28615445

Descripteurs français

English descriptors

Abstract

The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a multistage, multicompartment process that is essential for a broad range of cellular functions, including genome maintenance, protein translation, energy conversion, and the antiviral response. Genetic and cell biological studies over almost 2 decades have revealed some 30 proteins involved in the synthesis of cellular [2Fe-2S] and [4Fe-4S] clusters and their incorporation into numerous apoproteins. Mechanistic aspects of Fe/S protein biogenesis continue to be elucidated by biochemical and ultrastructural investigations. Here, we review recent developments in the pursuit of constructing a comprehensive model of Fe/S protein assembly in the mitochondrion.

DOI: 10.1074/jbc.R117.787101
PubMed: 28615445
PubMed Central: PMC5546016


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Iron-sulfur cluster biogenesis and trafficking in mitochondria.</title>
<author>
<name sortKey="Braymer, Joseph J" sort="Braymer, Joseph J" uniqKey="Braymer J" first="Joseph J" last="Braymer">Joseph J. Braymer</name>
<affiliation>
<nlm:affiliation>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg and.</nlm:affiliation>
<wicri:noCountry code="subField">35032 Marburg and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg and lill@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6</wicri:regionArea>
<wicri:noRegion>Robert-Koch-Strasse 6</wicri:noRegion>
<wicri:noRegion>Robert-Koch-Strasse 6</wicri:noRegion>
<wicri:noRegion>Robert-Koch-Strasse 6</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28615445</idno>
<idno type="pmid">28615445</idno>
<idno type="doi">10.1074/jbc.R117.787101</idno>
<idno type="pmc">PMC5546016</idno>
<idno type="wicri:Area/Main/Corpus">000333</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000333</idno>
<idno type="wicri:Area/Main/Curation">000333</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000333</idno>
<idno type="wicri:Area/Main/Exploration">000333</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Iron-sulfur cluster biogenesis and trafficking in mitochondria.</title>
<author>
<name sortKey="Braymer, Joseph J" sort="Braymer, Joseph J" uniqKey="Braymer J" first="Joseph J" last="Braymer">Joseph J. Braymer</name>
<affiliation>
<nlm:affiliation>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg and.</nlm:affiliation>
<wicri:noCountry code="subField">35032 Marburg and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg and lill@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6</wicri:regionArea>
<wicri:noRegion>Robert-Koch-Strasse 6</wicri:noRegion>
<wicri:noRegion>Robert-Koch-Strasse 6</wicri:noRegion>
<wicri:noRegion>Robert-Koch-Strasse 6</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyl Carrier Protein (chemistry)</term>
<term>Acyl Carrier Protein (genetics)</term>
<term>Acyl Carrier Protein (metabolism)</term>
<term>Adrenodoxin (chemistry)</term>
<term>Adrenodoxin (genetics)</term>
<term>Adrenodoxin (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Apoenzymes (chemistry)</term>
<term>Apoenzymes (genetics)</term>
<term>Apoenzymes (metabolism)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron-Binding Proteins (chemistry)</term>
<term>Iron-Binding Proteins (genetics)</term>
<term>Iron-Binding Proteins (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondria (enzymology)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Species Specificity (MeSH)</term>
<term>Sulfurtransferases (chemistry)</term>
<term>Sulfurtransferases (genetics)</term>
<term>Sulfurtransferases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adrénodoxine (composition chimique)</term>
<term>Adrénodoxine (génétique)</term>
<term>Adrénodoxine (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Apoenzymes (composition chimique)</term>
<term>Apoenzymes (génétique)</term>
<term>Apoenzymes (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mitochondries (enzymologie)</term>
<term>Mitochondries (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protéine ACP (composition chimique)</term>
<term>Protéine ACP (génétique)</term>
<term>Protéine ACP (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison au fer (composition chimique)</term>
<term>Protéines de liaison au fer (génétique)</term>
<term>Protéines de liaison au fer (métabolisme)</term>
<term>Protéines mitochondriales (composition chimique)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Sulfurtransferases (composition chimique)</term>
<term>Sulfurtransferases (génétique)</term>
<term>Sulfurtransferases (métabolisme)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Acyl Carrier Protein</term>
<term>Adrenodoxin</term>
<term>Apoenzymes</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acyl Carrier Protein</term>
<term>Adrenodoxin</term>
<term>Apoenzymes</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acyl Carrier Protein</term>
<term>Adrenodoxin</term>
<term>Apoenzymes</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Adrénodoxine</term>
<term>Apoenzymes</term>
<term>Ferrosulfoprotéines</term>
<term>Protéine ACP</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au fer</term>
<term>Protéines mitochondriales</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adrénodoxine</term>
<term>Apoenzymes</term>
<term>Ferrosulfoprotéines</term>
<term>Protéine ACP</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au fer</term>
<term>Protéines mitochondriales</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adrénodoxine</term>
<term>Apoenzymes</term>
<term>Ferrosulfoprotéines</term>
<term>Mitochondries</term>
<term>Protéine ACP</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au fer</term>
<term>Protéines mitochondriales</term>
<term>Sulfurtransferases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
<term>Protein Multimerization</term>
<term>Protein Transport</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Modèles moléculaires</term>
<term>Multimérisation de protéines</term>
<term>Pliage des protéines</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Spécificité d'espèce</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a multistage, multicompartment process that is essential for a broad range of cellular functions, including genome maintenance, protein translation, energy conversion, and the antiviral response. Genetic and cell biological studies over almost 2 decades have revealed some 30 proteins involved in the synthesis of cellular [2Fe-2S] and [4Fe-4S] clusters and their incorporation into numerous apoproteins. Mechanistic aspects of Fe/S protein biogenesis continue to be elucidated by biochemical and ultrastructural investigations. Here, we review recent developments in the pursuit of constructing a comprehensive model of Fe/S protein assembly in the mitochondrion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28615445</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>292</Volume>
<Issue>31</Issue>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Iron-sulfur cluster biogenesis and trafficking in mitochondria.</ArticleTitle>
<Pagination>
<MedlinePgn>12754-12763</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.R117.787101</ELocationID>
<Abstract>
<AbstractText>The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a multistage, multicompartment process that is essential for a broad range of cellular functions, including genome maintenance, protein translation, energy conversion, and the antiviral response. Genetic and cell biological studies over almost 2 decades have revealed some 30 proteins involved in the synthesis of cellular [2Fe-2S] and [4Fe-4S] clusters and their incorporation into numerous apoproteins. Mechanistic aspects of Fe/S protein biogenesis continue to be elucidated by biochemical and ultrastructural investigations. Here, we review recent developments in the pursuit of constructing a comprehensive model of Fe/S protein assembly in the mitochondrion.</AbstractText>
<CopyrightInformation>© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Braymer</LastName>
<ForeName>Joseph J</ForeName>
<Initials>JJ</Initials>
<Identifier Source="ORCID">0000-0003-1404-4066</Identifier>
<AffiliationInfo>
<Affiliation>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lill</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-8345-6518</Identifier>
<AffiliationInfo>
<Affiliation>From the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg and lill@staff.uni-marburg.de.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4EB7</AccessionNumber>
<AccessionNumber>3LVL</AccessionNumber>
<AccessionNumber>2MJE</AccessionNumber>
<AccessionNumber>3FQL</AccessionNumber>
<AccessionNumber>5LDW</AccessionNumber>
<AccessionNumber>2WUL</AccessionNumber>
<AccessionNumber>2M5O</AccessionNumber>
<AccessionNumber>5LCI</AccessionNumber>
<AccessionNumber>2NCL</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000213">Acyl Carrier Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001051">Apoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C121520">ISU1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033862">Iron-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C508374">Isd11 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C120375">YAH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098527">frataxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>12687-22-8</RegistryNumber>
<NameOfSubstance UI="D000325">Adrenodoxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.8.1.-</RegistryNumber>
<NameOfSubstance UI="D013466">Sulfurtransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.8.1.7</RegistryNumber>
<NameOfSubstance UI="C115912">NFS1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000213" MajorTopicYN="N">Acyl Carrier Protein</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000325" MajorTopicYN="N">Adrenodoxin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001051" MajorTopicYN="N">Apoenzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="Y">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033862" MajorTopicYN="N">Iron-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013466" MajorTopicYN="N">Sulfurtransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">acyl carrier protein (ACP)</Keyword>
<Keyword MajorTopicYN="Y">chaperone</Keyword>
<Keyword MajorTopicYN="Y">cysteine desulfurase</Keyword>
<Keyword MajorTopicYN="Y">fatty acid metabolism</Keyword>
<Keyword MajorTopicYN="Y">ferredoxin</Keyword>
<Keyword MajorTopicYN="Y">frataxin</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">lipoic acid</Keyword>
<Keyword MajorTopicYN="Y">metal biology</Keyword>
<Keyword MajorTopicYN="Y">mitochondrial disease</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28615445</ArticleId>
<ArticleId IdType="pii">R117.787101</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.R117.787101</ArticleId>
<ArticleId IdType="pmc">PMC5546016</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Metallomics. 2016 Oct 1;8(10 ):1032-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27714045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2014 May;100:48-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24440636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2017 Apr 21;12 (4):918-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28233492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Oct;1863(10):2362-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26968366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Mar;28(5):1851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 30;276(48):44521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2015 Nov;38(6):1147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25971455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 30;12 (1):e0171279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28135316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Aug 5;53(30):4904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2013 Aug;126 Suppl 1:43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23859340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1823(2):484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 May 21;11(5):e1005135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25996596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 May;1853(5):1130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25661197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Dec 27;288(52):36773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Oct 23;290(43):25876-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25541283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 29;289(35):24588-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25012657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Nov 11;89(5):656-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22077971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Oct 31;289(44):30268-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25228696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Jan 11;25(1):184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Nov 19;136(46):16240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:247-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 2;286(48):41205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21987576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Aug;11(8):579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20651708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Oct 31;5:5013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25358379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Dec 1;448(2):171-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2016 Dec 6;24(12 ):2080-2091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Apr;23(7):1157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2015 Feb 17;84(7):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Jun 18;27(12):1736-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2012 May 29;51(22):5439-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22511353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Oct;86(1):155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2010 May;11(5):360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20224575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1457-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25447670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12886008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2014 May;100:3-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24316280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2014 May;100:61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jan 04;8:13932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28051091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2001 Nov 7;123(44):11103-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11686732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jan 2;290(1):640-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25398879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Sep 30;291(40):21296-21321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27519411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Feb 12;392(3):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2016 Nov 18;11(11):3114-3121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27653419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 May 22;273(21):13264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2007 Mar-Apr;42(2):95-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17453917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1854(9):1113-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Aug 23;288(34):24777-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23839945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Oct;60(1-2):12-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12382038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Aug 15;1459(2-3):370-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11004453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2000 Feb;5(1):2-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10766431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Oct 4;288(40):29134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23946486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2015 Sep;20(6):1039-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26246371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Aug 18;536(7616):354-358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27509854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2017 Jan;1861(1 Pt A):3154-3163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27474202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Nov 8;50(44):9641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21977977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2017 Jan 25;9(1):48-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2013 Oct;14(10):630-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24026055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Jun 30;54(25):3871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26016389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jun;24(12):1830-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 16;51(41):8056-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23003563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2015;69:505-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26488283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 16;51(41):8071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23003323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Nov;29(22):6059-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19752196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Jan;16(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 May 6;291(19):10378-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 16;283(20):14092-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 May 23;26(10):1274-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27185558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Sep 19;134(37):15213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 19;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Jan 11;25(1):174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Oct 19;1:95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20981023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2014 Jun;16(6):834-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24245804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biology (Basel). 2015 Feb 12;4(1):133-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25686363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Oct 7;89(4):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1436-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25510311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2016 Feb 9;23 (2):292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26749241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Aug;1844(8):1355-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jan 19;6:5686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25597503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Apr 13;8(4):e1000354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1253-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25655665</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Giessen</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Marbourg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Braymer, Joseph J" sort="Braymer, Joseph J" uniqKey="Braymer J" first="Joseph J" last="Braymer">Joseph J. Braymer</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</noRegion>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000350 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000350 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28615445
   |texte=   Iron-sulfur cluster biogenesis and trafficking in mitochondria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28615445" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020